Виды фракталов


  1. Самоподобные множества с необычными свойствами в математике
  2. Рекурсивная процедура получения фрактальных кривых
  3. Фракталы как неподвижные точки сжимающих отображений
  4. Фракталы в комплексной динамике
  5. Стохастические фракталы


1. Самоподобные множества с необычными свойствами в математике

Начиная с конца XIX века, в математике появляются примеры самоподобных объектов с патологическими с точки зрения классического анализа свойствами. К ним можно отнести следующие: serpinsky's triangle

  • множество Кантора — нигде не плотное несчётное совершенное множество. Модифицировав процедуру, можно также получить нигде не плотное множество положительной длины.
  • треугольник Серпинского и ковёр Серпинского — аналоги множества Кантора на плоскости.
  • губка Менгера — аналог множества Кантора в трёхмерном пространстве.
  • примеры Вейерштрасса и Ван дер Вардена нигде не дифференцируемой непрерывной функции.
  • кривая Коха — несамопересекающаяся непрерывная кривая бесконечной длины, не имеющая касательной ни в одной точке.
  • кривая Пеано — непрерывная кривая, проходящая через все точки квадрата.
  • траектория броуновской частицы также с вероятностью 1 нигде не дифференцируема. Её хаусдорфова размерность равна двум.

2. Рекурсивная процедура получения фрактальных кривых

Существует простая рекурсивная процедура получения фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее, заменим в ней каждый отрезок генератором (точнее, ломаной,подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. На рисунке справа приведены три первых шага этой процедуры для кривой Коха. fractal Koch

Примерами таких кривых служат:


3. Фракталы как неподвижные точки сжимающих отображений

Свойство самоподобия можно математически строго выразить следующим образом. Пусть — сжимающие отображения плоскости. Рассмотрим следующее отображение на множестве всех компактных (замкнутых и ограниченных) подмножеств плоскости:

Можно показать, что отображение Ψ является сжимающим отображением на множестве компактов с метрикой Хаусдорфа. Следовательно, по теореме Банаха, это отображение имеет единственную неподвижную точку. Эта неподвижная точка и будет нашим фракталом. Рекурсивная процедура получения фрактальных кривых, описанная выше, является частным случаем данной конструкции. В ней все отображения — отображения подобия, а n — число звеньев генератора. Для треугольника Серпинского n = 3 и отображения ψ1, ψ2, ψ3 — гомотетии с центрами в вершинах правильного треугольника и коэффициентом 1/2. Легко видеть, что треугольник Серпинского переходит в себя при отображении Ψ. В случае, когда отображения ψi — преобразования подобия с коэффициентами ri > 0, размерность s фрактала (при некоторых дополнительных технических условиях) может быть вычислена как решение уравнения . Так, для треугольника Серпинского получаем s = ln3 / ln2. По той же теореме Банаха, начав с любого компактного множества и применяя к нему итерации отображения Ψ, мы получим последовательность компактов, сходящихся (в смысле метрики Хаусдорфа) к нашему фракталу.


4. Фракталы в комплексной динамике

Фракталы естественным образом возникают при изучении нелинейных динамических систем. Наиболее изучен случай, когда динамическая система задаётся итерациями многочлена или голоморфной функции комплексной переменной на плоскости. Первые исследования в этой области относятся к началу XX века и связаны с именами Фату и Жюлиа.

Пусть F(z) — многочлен, z0 — комплексное число и рассмотрим следующую последовательность:. Нас интересует поведение этой последовательности при . Эта последовательность может:

  • Стремиться к бесконечности;
  • Стремиться к конечному пределу;
  • Демонстрировать в пределе циклическое поведение, то есть поведение видаJulia's fractal
  • Демонстрировать более сложное поведение.
Множества значений z0, для которых последовательность демонстрирует один конкретный тип поведения, а также множества точек бифуркации между различными типами, часто обладают фрактальными свойствами.

Так, множество Жюлиа на картинке справа — множество точек бифуркации для многочлена F(z) = z2 + c, то есть тех значений z0, для которых поведение последовательности zn может резко меняться при сколь угодно малых изменениях z0.

Другой вариант получения фрактальных множеств — введение параметра в многочлен F(z) и рассмотрение множества тех значений параметра, при которых последовательность zn демонстрирует определённое поведение при фиксированном z0. Так, множество Мандельброта — это множество всех , при которых zn для F(z) = z2 + c и z0 = 0 не стремится к бесконечности.

Ещё один известный пример такого рода — бассейны Ньютона.

Популярно создание красивых графических образов на основе комплексной динамики путём раскрашивания точек плоскости в зависимости от поведения соответствующих динамических систем. Например, для дополнения множества Мандельброта можно раскрасить точки в зависимости от скорости стремления zn к бесконечности (определяемой, скажем, как наименьший номер n, при котором | zn | превысит фиксированную большую величину A).

Биоморфы — фракталы, построенные на основе комплексной динамики и напоминающие живые организмы.


5.Стохастические фракталы

Природные объекты часто имеют фрактальную форму. Для их моделирования могут применяться стохастические (случайные) фракталы. Примеры стохастических фракталов:

fractal random
  • траектория броуновского движения на плоскости и в пространстве;
  • граница траектории броуновского движения на плоскости. В 2001 году Лоулер, Шрамм и Вернер доказали предположение Мандельброта о том, что её размерность равна 4/3.
  • эволюции Шрамма-Лёвнера — конформно-инвариантные фрактальные кривые, возникающие в критических двумерных моделях статистической механики, например, в модели Изинга и перколяции.
  • различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр. Плазма — пример использования такого фрактала в компьютерной графике.
Фрактальная монотипия, или стохатипия — направления в изобразительном искусстве, заключающиеся в получении изображения случайного фрактала.

Copyright (c) JulyFlyzz flyzzmaks@gmail.com
Hosted by uCoz